In der empirischen Ökonomie ist eine „saubere Identifikation“ oft maßgebend: Instrumentalvariablen, Difference-in-Differences, Randomized Controlled Trials. Das ist gut und wichtig, aber nur weil ein Effekt kausal ist, erklärt er noch nicht viel von der beobachteten Variation. Viele identifizierte Effekte sind real, aber klein im Vergleich zu den großen Bewegungen in Beschäftigung, Einkommen oder Aktienkursen. Das Lehrstück Saubere Kausalität isoliert exogene aber häufig sehr geringe, Schwankungen (z. B. über Instrumente, Fixed Effects, Grenzfälle). Das liefert eine glaubwürdige Ursache-Wirkung-Aussage, aber der Preis ist, dass wir viel Variation wegwerfen. Ergebnis: Der Effekt ist kausal richtig, erklärt aber oft nur einen kleinen Teil des Gesamtbilds. Genau diese Trennung von kausal und relevant ist die zentrale Pointe dieses Beitrags. Paradoxon der Kausaliät Je strenger wir Identifikation betreiben, d...
Nahezu täglich sehen wir Nachrichten, welche neusten Test die LLMs gelöst haben - und die Tests sind häufig sehr komplex, wie z.B. Zulassungsprüfungen von Anwälten oder medizinische Examina. Doch gleichzeitig ist es verblüffend, an welchen einfachen Fragen LLMs scheitern. Tyler Cowen schrieb, dass die LLMs die für die Menschen mit Internetzugang einfache Frage nicht richtig beantworten Name three famous people who all share the exact same birth date and year Das Scheitern der LLMs, diese und ähnlich einfachen Fragen zu beantworten, kann uns wichtige Hinweise liefern, wie diese funktionieren. Es ist vielleicht am besten zu sagen, dass LLMs unglaubliche Intuition, aber begrenzte Intelligenz zeigen. Sie können fast jede Frage beantworten, die in einem intuitiven Durchgang beantwortet werden kann. Und mit ausreichend Trainingsdaten und genügend Schritten können sie sich einer Art von begründeter Intelligenz annähern. Mit anderen Worten, es gibt eine "Zielverschiebung", bei der,...